Direct reaction spectroscopy of exotic nuclei

RNB6, Argonne National Laboratory 22th-26th September 2003

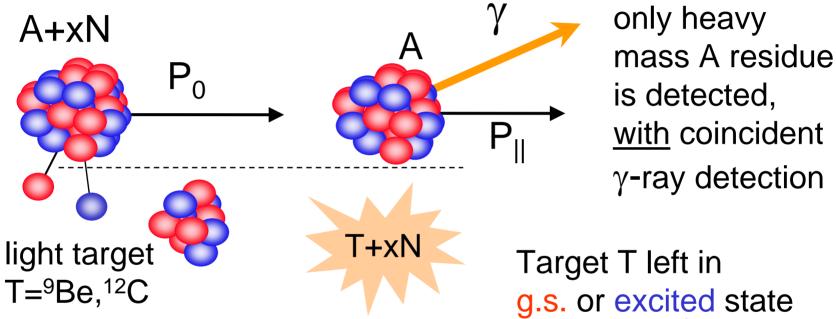
Jeff Tostevin
Department of Physics
School of Electronics and Physical Sciences
University of Surrey
UK

Direct reactions – experimental advances

- Single-nucleon transfer reactions, HRIBF (<u>Thomas</u>),
 ISOLDE, GANIL (+Tiara array), ANL, TA&M,
- Coulomb excitation: RIKEN, MSU, GSI, ... (Korten)
- Elastic and inelastic scattering, many groups, ...
- Break-up reactions, ND, MSU, RIKEN, GSI ...
- One- and two-nucleon knockout, MSU, GANIL, GSI, RIKEN

Much direct reaction theory 'of old' can be carried over to exotics arena – but the very weakly bound systems were a new challenge (non-perturbative, non-DWBA)

Direct one- and two-nucleon spectroscopy

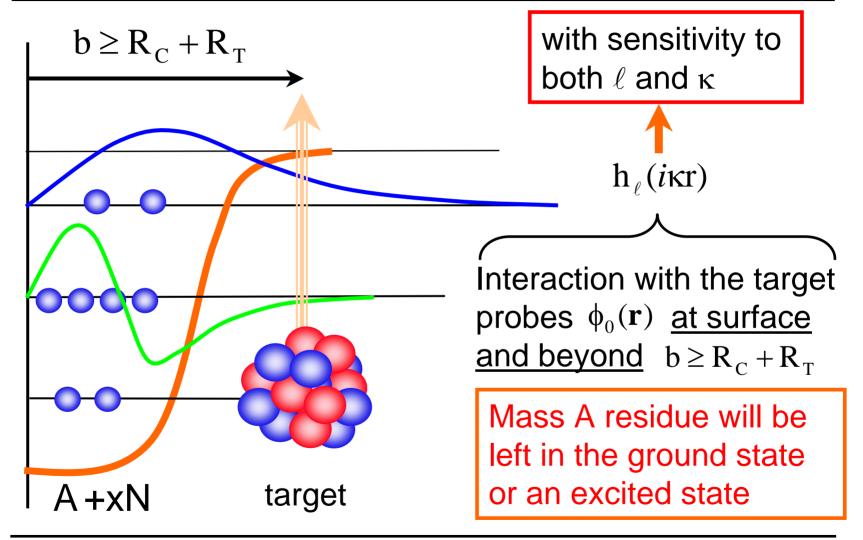

Consider here progress with:

- Single-nucleon knockout reactions of <u>weak</u> and <u>well-bound</u> states to probe correlations beyond the shell model – short range (hard core), cluster (e.g. alpha particle), tensor, → access to deep hole states
- Core degrees of freedom core deformation effects
- Core degrees of freedom one-nucleon overlaps in non-Borromean two-nucleon halo states.
- Two-nucleon correlations observed using direct twonucleon knockout reactions (Bazin)?

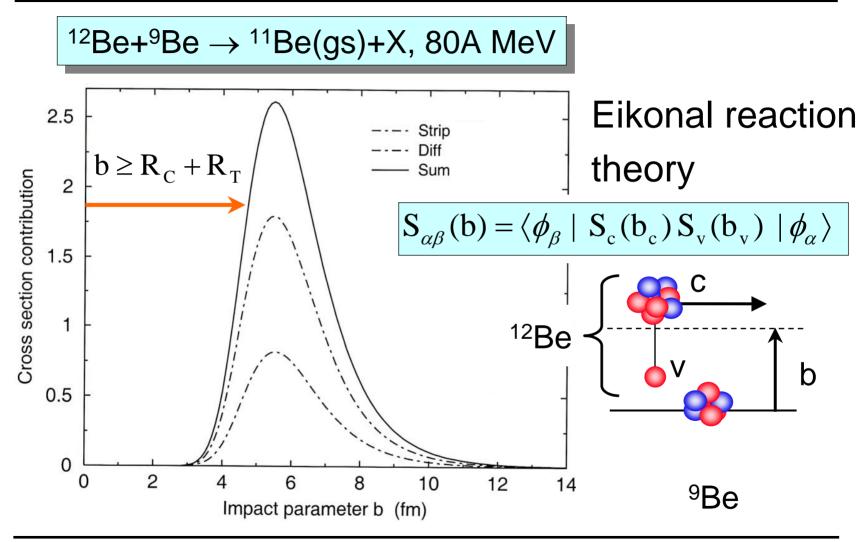
One- and two-nucleon knockout reactions

Peripheral collisions (E ≥ 50A MeV; MSU, RIKEN, GSI)

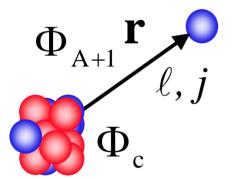
Direct from the projectile perspective



Events contributing will be both <u>break-up</u> and <u>stripping</u> both of which leave a mass A residue in the final state



Probe the surface and tails of wave functions


Contributions are from surface and beyond

Structure information – overlap integrals

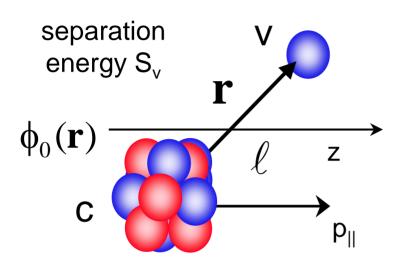
Nucleon removal from Φ_{A+1} will leave mass A residue in the ground or an excited state - even in extreme sp model

More generally: amplitude for finding nucleon with sp quantum numbers ℓ ,j, about core state Φ_{c} in Φ_{A+1} is

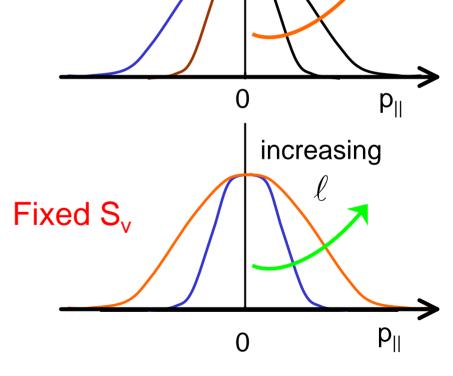
$$F_{\ell j}^{c}(\mathbf{r}) = \langle \mathbf{r}, \Phi_{c} | \Phi_{A+1} \rangle, S_{N} = E_{A+1} - E_{c}$$

$$\int \! d{\bf r} \, |F_{\ell j}^c({\bf r})|^2 \! = \! C^2 S(\ell j) \left\{ \! \begin{array}{l} \text{Spectroscopic} \\ \text{factor - occupancy} \\ \text{of the state} \end{array} \right.$$

Usual to write


$$\mathbf{F}_{\ell j}^{\mathrm{c}}(\mathbf{r}) = \sqrt{\mathbf{C}^{2}\mathbf{S}(\ell j)} \,\phi_{0}(\mathbf{r}); \quad \int d\mathbf{r} \, |\phi_{0}(\mathbf{r})|^{2} = 1$$

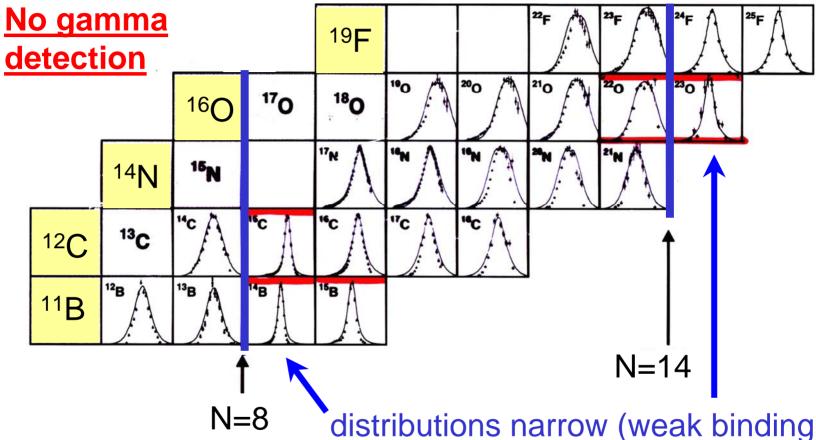
with $\phi_0(\mathbf{r})$ calculated in a potential model (Woods-Saxon)



Measurement of the momentum content

Fixed ℓ

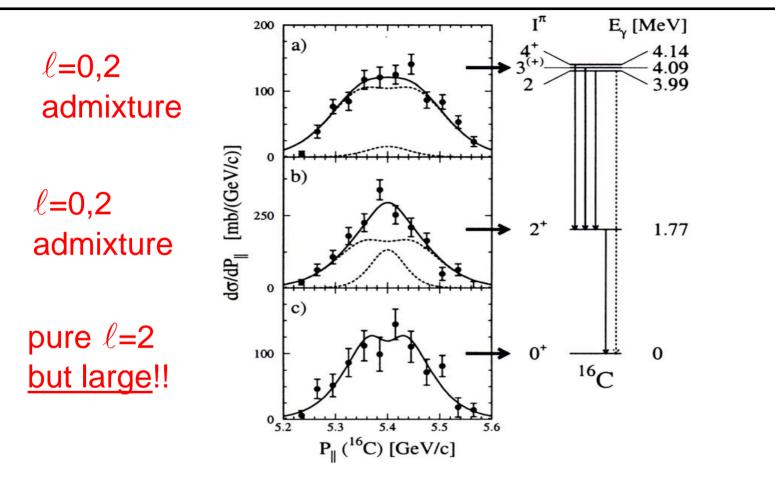
consider momentum components $p_{||}$ of the heavy residue parallel to the beam direction. In the projectile rest frame



increasing

 S_{v}

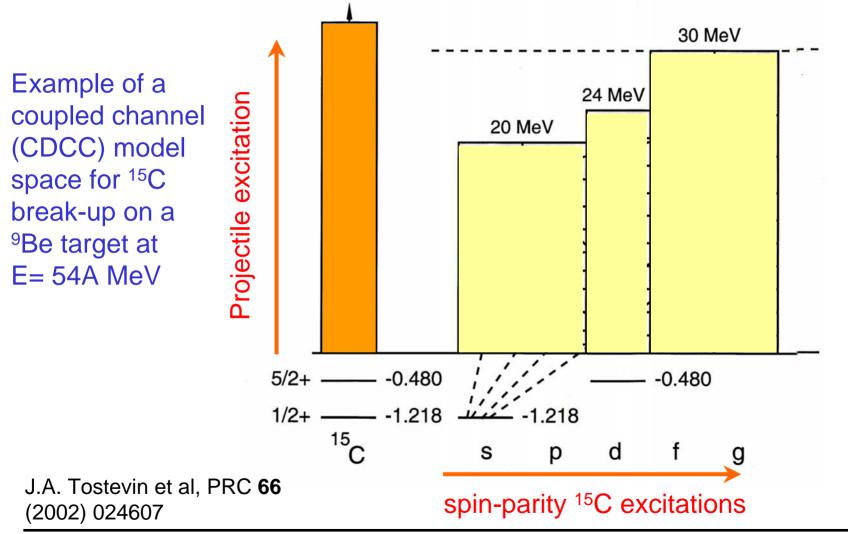
Systematics of momentum content in p-shell



or s-states as one crosses shell or sub-shell closures

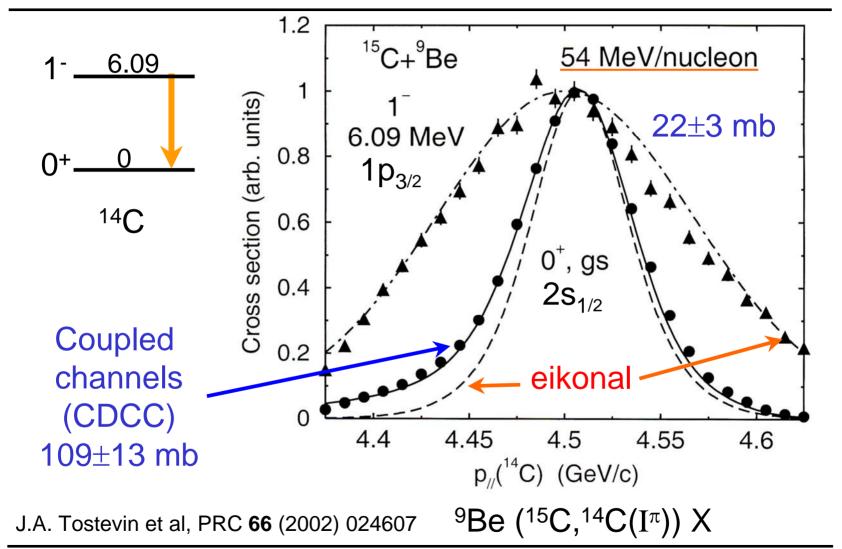
E.Sauvan et al., Phys Lett B **491** (2000) 1

Single-neutron knockout from ¹⁷C - eikonal

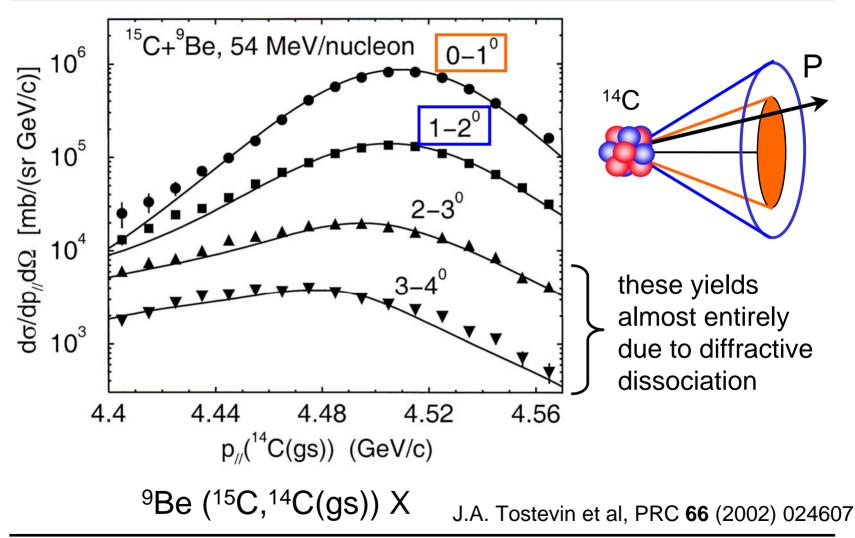


$$\sigma(nI^{\pi}) = \sum C^2 S(j, nI^{\pi}) \sigma_{sp}(j, B_n)$$

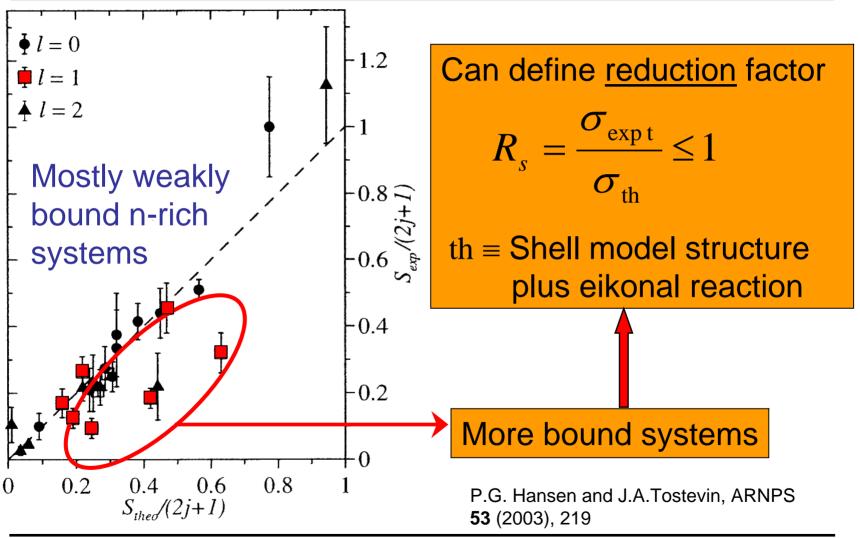
V. Maddalena et al. Phys. Rev. C **63** (2001) 024613



Coupled channels model – beyond eikonal

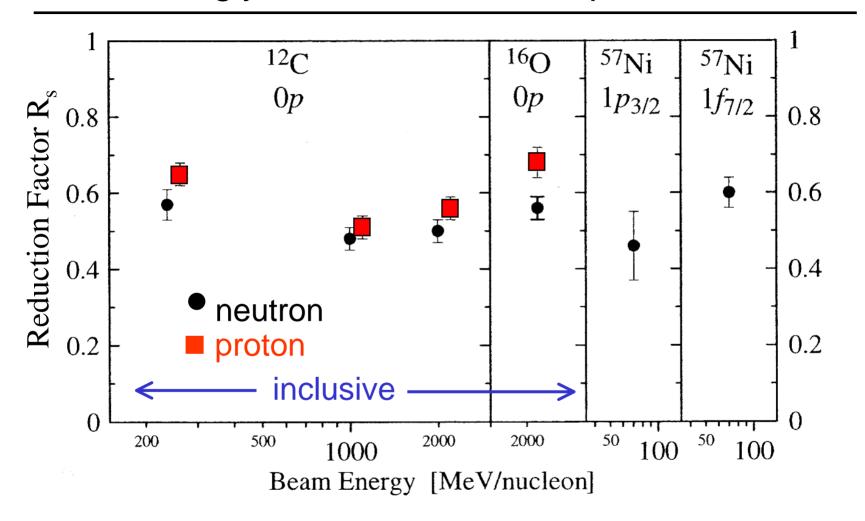


Non-adiabatic and non-eikonal effects for ¹⁵C



Core fragment differential cross sections

Deduced vs. shell model spectroscopic factors



Absolute spectroscopic factors using knockout

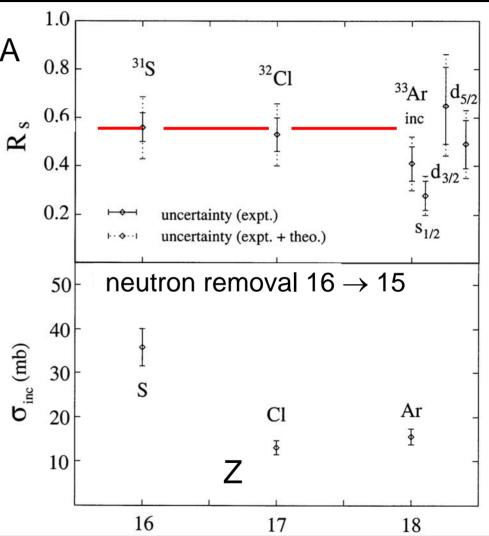
	A-1Z	E _B MeV/	E^*		nb) ^a	σ_{th}	σ_{exp}		B.A. Brown et (2002) 061601	
		nucleon		Surip.	Diffr.	(mb)	(mb)	R_s		
	¹¹ B	250	a	21.9	1.8	100.5	65.6(26) b	0.65(3)	→ 0.53(2)	(e,e'p)
	15.96	1050	a	20.8	1.9	96.1	48.6(24) ^c	0.51(3)	0.52(2)	0 51/2)
S _p =		2100	a	20.6	2.0	96.1	53.8(27) °	0.56(3)	0.55(2)	0.51(3)
										 -
	¹¹ C	250	a	21.4	1.7	98.2	56.0(41) b	0.57(4)		
S _n =	18.7	1050	a	20.2	1.8	93.4	44.7(28) ^c	0.48(3)	→ 0.49(2)	'
		2 2100	a	20.1	1.9	93.3	46.5(23) ^c	0.50(3)	0.43(2)	
	¹⁵ N	2100	0	15.40	1.77					
S _p =	40.4	0	6.324	12.95	1.30					! ! !
	12.1	3	Sum			80.2	54.2(29) b	0.68(4)	0.68(4)	0.67(5)
	¹⁵ O	2100	0	14.63	1.61					I I I
S _n =	4- 4	20	6.176	12.54	1.23					I I I
	= 15.66		Sum			76.9	42.9(23) ^c	0.56(3)	\longrightarrow 0.56(3)	!

More strongly bound states – deep hole states

P.G. Hansen and J.A.Tostevin, ARNPS 53 (2003), 219

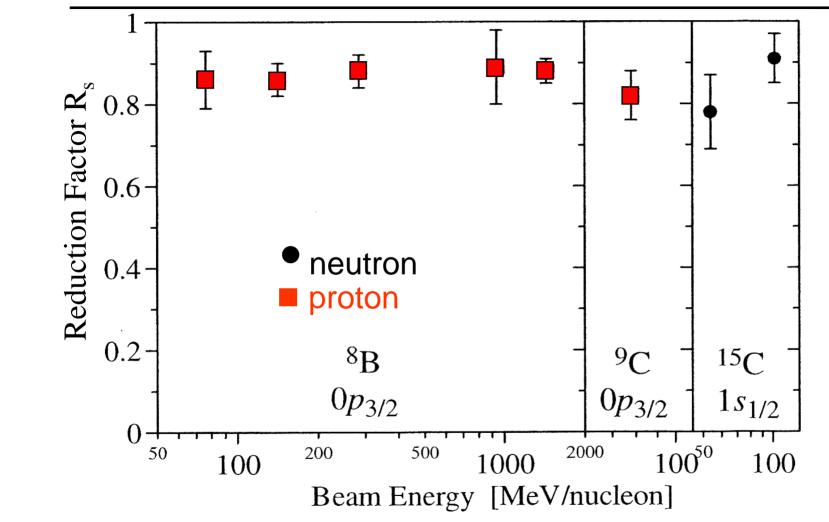
Neutron removal from the N=16 isotones

 $E_{beam} = 63, 66, 70 \text{ MeV/A}$

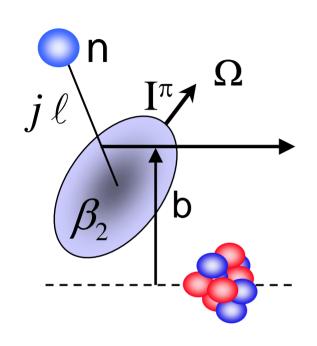

Deep hole-states:

$$S_n(^{32}S) = 15.04 \text{ MeV}$$

$$S_n(^{33}CI) = 15.74 \text{ MeV}$$


$$S_n(^{34}Ar) = 17.07 \text{ MeV}$$

Alexandra Gade et al, Submitted to PRC, MSU preprint


Weakly bound states – with good statistics

P.G. Hansen and J.A.Tostevin, ARNPS 53 (2003), 219

Core degrees of freedom – deformed cores

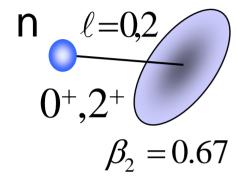
$$\Psi_{JM}(\mathbf{r},\hat{\Omega}) = \sum_{\ell j I} \left[\phi_{j\ell}(\mathbf{r}) \otimes \phi_{I}(\hat{\Omega}) \right]_{JM}$$

$$I = 0, 2, 4, \dots$$

weak-coupling n-deformed core model: this includes

- core excitation / de-excitation
- core reorientation effects

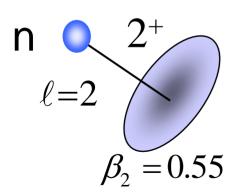
The inclusive stripping contribution now reads, e.g.


$$\sigma_{\text{strip}} = \sum_{M} \int d\mathbf{b} \int d\hat{\Omega} \langle \Psi_{JM} || S_{c}(\hat{\Omega})|^{2} (1 - |S_{n}|^{2}) |\Psi_{JM}\rangle$$

P.Batham, J.A. Tostevin and I.J. Thompson, in preparation, 2003

Core deformation effects –outstanding cases

¹¹Be(1/2+): $S(0^+)=0.76$, $S(2^+)=0.18$


excess of cross section to ¹⁰Be(2+) state

$$\sigma_{\text{exp}}(2^+)=16(4) \text{ mb}, \qquad \sigma_{\text{th}}(2^+)=9 \text{ mb}$$

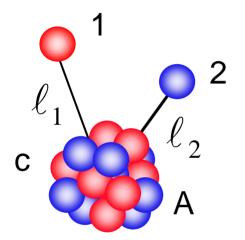
 $\sigma_{diff}(deformed)$ increased by 8 mb

T. Aumann et al., PRL **84** (2000) 35

¹⁷C(3/2+): S(2+,
$$\ell$$
=2)=1.44, S(2+, ℓ =0)=0.16, S(0+, ℓ =0)=0.03

excess of cross section to ¹⁶C(0+) state

$$\sigma_{\text{exp}}(0^+)=22(11) \text{ mb}, \quad \sigma_{\text{th}}(0^+)=2 \text{ mb}$$


 σ_{diff} (deformed) increased by 19.4 mb

V. Maddelena et al., PRC **63** (2001) 024613

Direct two nucleon knockout – 2N correlations?

$$\sigma_{\text{strip}} = \sigma_{-2N} = \int d\mathbf{b} \langle \phi_0 || S_c |^2 (1 - |S_1|^2) (1 - |S_2|^2) |\phi_0\rangle$$

Estimate assuming removal of a pair of <u>uncorrelated</u> nucleons -

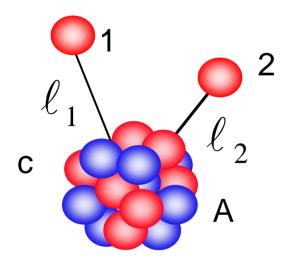
$$\phi_0(\mathbf{A}, \mathbf{r}_1, \mathbf{r}_2) = \Phi_c(\mathbf{A})\phi_{\ell_1}(\mathbf{r}_1)\phi_{\ell_2}(\mathbf{r}_2)$$

$$\sigma_{
m strip} \Rightarrow \sigma_{
m strip}(\ell_1 \ell_2)$$

contribution from direct 2N removal σ_{-}

$$\begin{array}{c|c} \text{p particles} & \ell_{\alpha} \\ \hline \text{q particles} & \ell_{\beta} \end{array}$$

$$\sigma_{-2N} = \frac{p(p-1)}{2} \sigma_{\text{strip}}(\ell_{\alpha}\ell_{\alpha}) + \frac{q(q-1)}{2} \sigma_{\text{strip}}(\ell_{\beta}\ell_{\beta}) + pq \sigma_{\text{strip}}(\ell_{\alpha}\ell_{\beta})$$


D. Bazin et al., PRL 91 (2003) 012501

Two proton removal from n-rich – (i) uncorrelated

28 Mg \rightarrow 26 Ne(inclusive)

D. Bazin et al., PRL **91** (2003) 012501

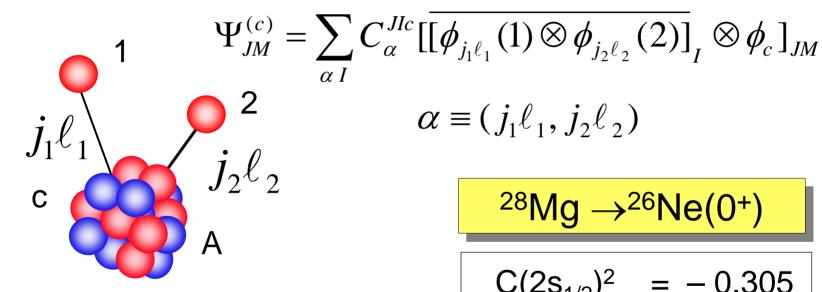
Assuming $(1d_{5/2})^4$ then

$$\sigma_{-2N} = \frac{4(4-1)}{2} \sigma_{\text{strip}}(22) \approx 1.8 \text{mb}$$

Expt:1.50(1)mb

$$p=4$$
 $\ell=2, \frac{p(p-1)}{2}=6$

$$\sigma_{\rm strip}(22) = 0.29 \text{ mb}$$


$$\sigma_{\text{strip}}(02) = 0.32 \text{ mb}$$

$$\sigma_{\text{strip}}(00) = 0.35 \text{ mb}$$

Two proton removal from n-rich – (ii) correlated

$$\sigma_{\text{strip}} = \frac{1}{2J+1} \sum_{M,c} \int d\mathbf{b} \langle \Psi_{JM}^{(c)} || S_c |^2 (1-|S_1|^2) (1-|S_2|^2) |\Psi_{JM}^{(c)} \rangle$$

There is now no factorisation!!

$$\alpha \equiv (j_1 \ell_1, j_2 \ell_2)$$

$$^{28}\text{Mg} \rightarrow ^{26}\text{Ne}(0^{+})$$

$$C(2s_{1/2})^2 = -0.305$$

 $C(1d_{3/2})^2 = -0.301$
 $C(1d_{5/2})^2 = -1.05$

Test case - earlier data from Berkeley (~10%)

2N removal from ¹²C B.A. Brown, 2N amplitudes Kidd et al., Phys Rev C **37** (1988) 2613

	Energy/nucleon	250 MeV	1.05 GeV	2.10 GeV
	¹² C→ ¹⁰ Be (2p)	5.82 mb	5.33 mb	5.15 mb
00	¹² C→ ¹⁰ Be (2p) S(2p)=27.18 MeV	5.88(90)	5.30(30)	5.81(29)
	¹² C→ ¹⁰ C (2n)	4.26 mb	3.91 mb	3.84 mb
00	¹² C→ ¹⁰ C (2n) S(2n)=31.84 MeV	5.33(81)	4.44(24)	4.11(22)

J.A. Tostevin, G. Podolyák, et al., in preparation

Cross sections – correlated and uncorrelated

28
Mg \rightarrow 26 Ne(0+, 2+, 4+) S = σ (in mb) / 0.29

	S _{th}	S _{exp}	S _{th}	$\sigma_{\sf exp}$	σ_{th}
	unc.		corr.	(mb)	(mb)
0+	1.33	2.4(5)	1.72	0.70(15)	0.53
2+	1.67	0.3(5)	0.51	0.09(15)	0.16
4+	3.00	2.0(3)	1.69	0.58(9)	0.52
2+	-	0.5(3)	0.73	0.15(9)	0.22

Inclusive cross section (in mb) 1.5(1) 1.43

J.A. Tostevin, G. Podolyák, et al., in preparation

We have made considerable progress

☐ Knockout does appear to us the same information as (e,e'p) reactions – but also for neutrons and exotics
☐ More <u>systematics</u> are confirming this – a new way to study short range, tensor and other correlations in systems with very different structures and binding
☐ Core deformation effects are significant: specific cases
☐ Possible to observe new (pre-asymptotic) behaviour of overlap integrals of non-Borromean halo systems? — affect deduced dripline spectroscopy on a detailed level
☐ Well chosen two-nucleon knockout reactions are <u>direct</u> reactions and <u>can</u> probe 2N correlations (Bazin)

